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Abstract

In the field of high-resolution transmission electron microscopy (HRTEM), the term
“resolution” has come to hold a number of different meanings [1]. The present work reviews
the various definitions of HRTEM resolution, derives theoretical expressions for resolution, and
suggests how high resolutions may be attained in practice.

1. . Introduction
In light optics, resolution can be defined for a particular microscope or optical system
using the well-known Rayleigh criterion, which relates to the minimum distance where the
separation of two points is barely discernable to the imaging wavelength and the aperture of the
optical system. However, the Rayleigh resolution criterion was developed for incoherent
imaging conditions and cannot, in general, be applied to high-resolution transmission electron
microscopy (HRTEM). In fact, the Rayleigh criterion may lead to paradoxical results since it
considers only two scatterers and does not account for the signal-to-noise ratio [2]. It may,
however, be used for dark-field high-angle annular-detector (HAAD) STEM imaging [3,4].
For the case of strong multiple scattering in HRTEM lattice imaging, the only general relations
that can be assumed between the image of a specimen and its projected crystal potential are those
| imposed by symmetry, and the "local” HRTEM column approximation. In fact, the effects of
limited instrumental resolution may produce an image of lower symmetry than that of the object,
whereas misalignment along symmetry axes may preserve some symmetry elements.

Under coherent conditions, the ability to distinguish atoms in an image depends on their
scattering phases, which are a property of the sample. Since resolution, as defined classically
by the Rayleigh criterion, should be a property of the microscope and not of the sample, it
cannot be defined for HRTEM in the same terms. For HRTEM images in general (including
images from thicker specimens, where dynamical contributions are strong), a-'way around this
problem was found when computer programs [5] were developed to enable the comparison of
experimental images with ones simulated from appropriate atomic models; such comparisons are
usually made qualitatively, although the use of "R" factors based on least-square comparisons
of computed and experimental images has been proposed [6,7]. Such R-factors should



emphasize the trade-off between resolution and noise. (At high count rates the noise from YAG
scintillators is not Poisson; this distribution will affect the resolution retrieved by image
processing from the new slow-scan YAG/CCD systems [1]).

2. Resolutions

Although we cannot, in general, produce a single figure that defines the resolution of an
electron microscope, it is possible to talk about the resolution present in a particular electron
micrograph, and even to place a limit on the resolution of images that can be produced by a
particular HRTEM. Image "resolution"” is a measure of the spatial frequencies transferred from
the image amplitude spectrum (exit-surface wavefunction) into the image intensity spectrum (the
Fourier transform of the image intensity). This transfer is affected by several factors -- the
phases of the diffracted beams exiting the sample surface, additional phase changes imposed by
the angular-dependent objective lens defocus and spherical aberration, the physical objective
aperture, and coherence effects that can be characterized by the microscope spread-of-focus and
incident beam convergence. For thicker crystals, the frequency-damping action of the
coherence effects is complex and must be described in terms of the transmission cross-
coefficient [8], but for a thin crystal, i.e. one behaving as a weak phase object (WPO), the
damping action can best be described by quasi-coherent imaging theory [9] in terms of envelope
functions [10,11] imposed on the usual phase-contrast transfer function (CTF).

There are three commonly employed definitions of "HRTEM resolution" [12]; since all
are defined as the reciprocal of a particular spatial frequency, we need to examine how image
amplitude terms are transferred into the image intensity spectrum. We can then examine how
limits on these transfers arise from the effects of spatial and temporal coherence on the
transmission cross-coefficient. The three resolutions are --

* "Fringe" resolution, or "line" resolution (sometimes called "lattice-plane" resolution), is
measured from the highest spatial frequency present in the image intensity spectrum (and
detectable in the optical diffractogram). In images from thicker crystals, it is generally over-
optimistic compared with other measures of resolution, since it may come from a "second-
order" or "non-linear" interference generating a half-spacing term with spatial frequency up to
twice that of the highest-frequency diffracted beam passed by the objective aperture and the
- convergence cross-coefficient envelope [8].. For a properly aligned microscope, it is not
affected by microscope spread-of-focus. | _ _

* ‘"Linear-image" resolution, or "information limit" resolution, is measured by the highest
spatial frequency transferred linearly from the amplitude spectrum to the intensity spectrum.
Transferred frequencies fall within one or more passbands, but other (lower) frequencies may
be blocked. Increased underfocus will push the convergence-limited dampihg function to



higher frequencies, thus the limit (called the information limit) to point resolution is a function
of microscope spread-of-focus and mechanical stability. _

* "Scherzer" resolution, or "structure-image" resolution (sometimes called "point” resolution
or "point-to-point” resolution) is measured by the highest linearly-transferred spatial frequency
that can be passed when no lower frequencies are blocked or passed with opposite phase [13].
The Scherzer image is important because it is (an approximation to) a projection of the specimen
structure (to a limited resolution) in the direction of the incident beam. For images obtained at’
an "optimum" defocus of V1.5 Scherzers (that is, a defocus of \/(I.SCSX), where Cg is the
objective lens spherical aberration coefficient, and A is the electron wavelength), the Scherzer
resolution is generally defined by the upper limit of a passband with strong transfer out to a
spatial frequency of 1.49Cg-1/4)-3/4,

3. Resolution and the Image Intensity Spectrum

It is instructive to examine how the three resolutions relate to expressions that occur in
the derivation of the weak-phase-object (WPO) image. The electron wavefield emerging from
the exit surface of the specimen becomes the "object” for the imaging system of the electron
microscope, which in turn produces the image intensity impinging on the recording medium. In
general, the image intensity, I(x), may be described as the square of the image amplitude, y(x).

1) = yo) ¥ x) )

The Fourier transform of the image intensity is called the image intensity spectrum, I(k),
and consists of a set of (complex) amplitudes in reciprocal space with the same spacings as the
specimen diffraction pattern. Since the image intensity spectrum contains the same information
as the image intensity itself, the whole process of image production in the HRTEM may be
described in terms of general equations involving the image intensity spectrum, rather than by
using the image intensity directly [14]. Such a description enables the various resolutions to be
derived and contrasted. The equations also lead naturally to the notion of a transmission cross-
coefficient [8] for incorporating spatial and temporal coherence effects (and are used in this
manner in the SHRLI programs that have been so successful in generating HRTEM image
- simulations [15]). Fourier transformation of equation (1)-yields the image intensity spectrum,
I(k), given-by the-auto-correlation-function of the image amplitude spectrum, ¥(k), as

Ik) = ¥k) ® ¢*(k) ; )

where X represents convolution, and ¥(K) is derived from the (Fourier space) specimen exit
surface wavefield, Wg(k), by multiplication by the objective lens phase factor function,
exp[iX(k)], where



X(k) = med k|2 + nCg A3 |k[42 A3)

Here A is electron wavelength, and € and Cg are the objective lens defocus and spherical

aberration coefficient respectively.

3.1 Fringe Images

Equation (2) states that any spatial frequency term in the general image intensity
spectrum contains a combination of several of the spatial frequencies in the image amplitude
spectrum (i.¢. of many of the diffracted beams allowed through the objective aperture). Figure
la illustrates how an intensity spectrum is generated from an amplitude spectrum for the case of
an image formed from five co-linear diffracted beams out to h=t2. Note that the interferences
making up the intensity spectrum terms may be classified as two types -- "linear" terms that
involve the zero beam, and "non-linear" terms that occur when neither interfering beam is the

zero beam. Although only five diffracted beams contribute to the image, there are nine peaks in

the image intensity spectrum (and nine spots would appear in the optical diffractogram)
Tepresenting terms out to h=+4. In this case the fringe resolution is the reciprocal of the 4 (or
, 4) frequency (formed by the "non-linear" interference of the 2 and 2 terms from the amplitude
spectrum), that is, the fringe resolution is the reciprocal of the highest frequency in the intensity
spectrum.

3.2 Linear (Information Limit) Images

If the non-linear or second-order interferences contributing to I(k) in equation (2) can be
neglected (i.e. if their amplitudes are much smaller than those of the linear interferences), it is
possible to show that only one pair of diffracted beams contributes to each spatial frequency in
the image intensity spectrum [14]. Furthermore, if the proportion of dynamical scattering is
low enough to be neglected compared with kinematical scattering, then the two diffracted beams
can be related back to one single coefficient of the projected specimen potential. The above two
conditions hold for objects that scatter electrons only weakly, such as thin amorphous
specimens and very thin crystalline specimens. Such a specimen may be treated as a weak-
phase-object (WPO). Under the first condition, each term in the "linear-image" intensity
spectrum consists of only two interference terms (fig 1b), i.e. the kth component of the "linear-
image" intensity spectrum involves interferences of only the k and -k diffracted beams with the
zero beam

IL(K) = ®(k).¥*(0) + ®(0).¥"(-k) ' @

and, since ¥(0) has a weight that is very close to unity for a weakly-scattering specimen,

IL(k) = ¥e®).expliX(k)] + Pg*(-k).exp[-iX(-k)] (5)
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For specimens that scatter electrons only weakly, it is possible to meet the second WPO
condition also, i.e. to neglect dynamical diffraction and make a kinematic scattering
approximation [16,17]. Under such an approximation, the exit-surface wavefield in direct

space may be written
VE(X) = 1 - i0¢p(x)H 6)

where © is the interaction coefficient at the appropriate accelerating voltage, $p(x) is the

specimen potential projected in the direction of the incident electron beam, and H is the
specimen thickness through which the projection is taken. Transforming to Fourier space

¥g(k) = 8(k) - io V(k)H | )
where V(k) is the kth Fourier component of the projected potential ¢p(x).
Substituting into (5), |
IL(K) = 8(k) - i6 V(k)H exp[iX(k)] +io V*(-k) H exp[-iX(-k)] ()

Since V*(-k) is equal to V(k) for kinematic scattering, and {exp[iX(k)] - exp[-iX(-k)]} is equal
to 2isinX(k), the image intensity spectrum for such a "linear", or "weak-phase object” image is
then -

I.(k) = 8(k) + 2 o V(k) H sinX(k) 9)

and the magnitude of the kth term in the image intensity specirum is just proportional to V(Kk),
the kth Fourier coefficient of the projected potential, and to sinX(k), the value of the phase-

contrast transfer function at the corresponding value of Ik!.

The significance of the sinX(k) factor in the expression for the terms making up the
linear-image intensity spectrum can be illustrated geometrically. Figure 2 shows how the
contribution of the kth term in the spectrum is governed by the value of sinX(k) under WPO
conditions. The contribution to the ¥(k) term of the image amplitude spectrum (eqn 4) is
shown in figure 2a. In the complex (Argand) plane, the kth Fourier coefficient of the projected
potential V(k) can be represented by a complex number lying along some direction (in the
~ figure, we have chosen the case of a centrosymmetric crystal, and V(k) lies al£>ng the positive-

real axis). Under the kinematic scattering approximation (eqn 7), diffraction produces the kth
component of the exit-surface wave Wg(Kk) in the form of the diffracted beam scattering from

V(k); then ¥g(k) can be represented by a complex number, rotated -n/2 from V(k) and equal
to -ioV(K)H. To form the image, the diffracted beam propagates from the exit surface to the



image plane; at the image plane, the phase of Wg(k) has been changed by the action of the lens

to form the kth component of the image amplitude spectrum ¥(k), represented by the complex -
number rotated by an angle of X(k) from ¥g(k).

Under the linear-image approximation, the image intensity spectrum is derived from the
image amplitude spectrum by addition of just two terms (eqn 4); thus the kth component of the
image intensity spectrum Ij (k) is the sum of ¥(k) and ¥*(-k). Just as figure 1a shows how
¥(k) can be represented geometrically, figure 1b illustrates the geometrical representation of
w*(-k). Then the kth component of the image intensity spectrum, the sum of ¥(k) and
¥*(k), is shown in figure 2c. From the figure, we see that I; (k) is just twice the projection of
¥(k) onto the negative extension of V(k) (as in eqn 9), and the projection of ¥(k) is
proportional to V(k) times sinX(k). This proportionality demonstrates the importance of the
sinX term. Obviously, I (k) is maximized as the lens phase X(k) approaches a value of -7/2,
and falls to zero as X(k)’ approaches zero (or nx). Thus sinX is a weighting term that governs
how much of each term in the image amplitude spectrum is transferred into the image intensity
spectrum. For this reason, sinX is called the contrast transfer function (CTF).

- More properly perhaps, sinX should be called the phase-contrast transfer function, in
order to stress that it describes the transfer of only the linear-image, or first-order, terms into the
intensity, as described by the thin-crystal, or weak-phase-object approximation. Also, some
authors use the term CTF to refer to 2sin)X because the value of I (K) is twice the projection of '
¥(k), i.e. ¥(k) times twice sinX(k), so that the transfer of ¥(k) into I (k) is described by
2sinX.

A plot of sinX(k) as a function of Ikl provides information as to how each diffracted
beam will transfer into the image. Some CTF curves are shown in figure 3. For any particular
objective lens polepiece and microscope accelerating voltage, the only adjustable parameter in
the expression for X(k) is the defocus (eqn 3). Changing defocus gives us some control over
the shape of the CTF curve, and thus the amount of transfer into the image of the available
diffracted beams.

3.3 Scherzer Images
Scherzer [13] introduced the concept of the transfer function and suggested an optimum

defocus condition designed to maximize the range of spatial frequencies for which sinX is close
to -m/2. Scherzer chose the value of optimum defocus to be -2.5V(CsA/27), or approximately
-V(Cs)); this value of defocus is now called one Scherzer. Figure 3a shows a CTF curve for a
defocus of one Scherzer. At this defocus, the objective lens phase angle X has a value close to



zero for zero frequency (large spacings), reaches a value of -n/2 (sinX = -1) for spatial
frequencies around Cs-1%4A-34, and returns to zero at a frequency of V2Cs-1/4A-3/4; it then
changes sign and becomes positive. As long as sinX(k) remains negative, then Ij (k) will be
opposite in sign to its originating V(k). Thus, at a (real-space) position where a component
V(Kk) contributes to a positive peak in the crystal potential ¢(x), the corresponding image
intensity component Ij (k) will show a minimum in the image intensity at this position; since
positive peaks in the crystal potential occur at atom positions, we say that Scherzer defocus
produces a “black-atom" condition. |

Beyond the "Scherzer cut-off frequency" sinX(k) becomes positive, and higher-
frequency Fourier components of the potential would contribute to the image with opposite sign
("white-atom" contrast) to those below the cut-off. An image containing a mixture of spatial
frequencies transferred with opposite phases is, in general, no longer interpretable intuitively
and requires comparison with image simulations for interpretation [5]. For this reason,
frequencies above the Scherzer cut-off are frequently blocked, either with an objective aperture
or by coherence effects, in order to provide a simple image. Since no frequency higher than the
Scherzer cut-off frequency can be guaranteed to be transferred with the correct phase, such a

"Scherzer" image will have a resolution no greater than the reciprocal of the cut-off frequency.

Although those image amplitude components with spatial frequencies lying within the
broad Scherzcr_passband will be transferred into the image intensity spectrum with various
weightings (as shown by figure 3a), usual practice is to make the approximation that transfer is
complete for each frequency, i.e. that sinX(k) is equal to -1 from zero spatial frequency to the
cut-off frequency. Then, with sinX = -1 in equation 9, the Scherzer image intensity spectrum is
given by

Ig(k) = &(k) - 206H V(k) . (10)

Fourier transformation of this expression yields the Scherzer image intensity as
Is(x) = 1 - 20H ¢p(x) - (11)

where, (as for eqn 6), G is the interaction coefficient at the appropriate accelerating voltage,
¢p(x) is the specimen potential (to a limited resolution) projected in the direction of the incident
electron beam, and H is the specimen thickness through which the projection is taken. Equation
11 shows that the image intensity of the Scherzer image is proportional to the negative of the
specimen potential projected in the beam direction, i.e. minima in the Scherzer image
correspond to maxima in the specimen potential ("black atom" condition).



It is easy to compute “"perfect Scherzer" or "WPQ" images according to equation 11, and
these images are useful for checking on the resolution of more-complicated images, even ones
simulated for novel conditions such as hollow-cone dark-field imaging [18]. Comparisons of
simulated WPO and experimental images show that using the cut-off value to determine the
Scherzer resolution of HRTEMs may be optimistic, since resolution in experimental images
may be up to 10% less than the Scherzer cut-off value [18], because higher frequencies are not
transferred with their full weight (e.g. in figure 3a, a diffracted beam corresponding to a
spacing of 1.9A is passed with only 50% wc1ght1ng, although the Scherzer cut-off is nominally
1.78A).

Scherzer Resolution _

It is possible to extend the passband for the Scherzer image by setting defocus to be
slightly further underfocus than one Scherzer. Cowley [17] suggested a defocus value of
V4/3) Sbhcmers, and a value of V(1.42) was judged best for single-atom imaging [19]. Once
simulated images became available, a defocus value of V(3/2) Scherzers was decided upon,
based on careful comparisons of simulated WPO and SHRLI images [15], and this is the value
that is generally accepted as "optimum" [7]. At this optimum defocus value, X(k) reaches a
minimum of -37t/4 at a spatial frequency of 1.1067Cs14)\-3/4 (compared with a minimum value
of -1t/2 at Cs-1/4)A-3/4 for a defocus of one Scherzer). Because X(k) dips below -/2, the CTF
curve shows a mid-range hump (fig.3b), reaching a maximum value of -1/¥2, so that mid-range
spatial frequencies within the passband are transferred with as little as 70% weighting. In fact,
comparison with simulations shows that it makes sense to consider the passband as extending
over the spatial frequency region within which transfer is always greater than 70%. In terms of
the Argand diagrams of figure 2, this means that only amplitude components with phase anglés
within 11t/4 of the negative extension of V(k) are considered as contributing fully to the
Scherzer image. This passband is marked on figure 3b and extends from 0.4741Cs-1/4A-3/4 to
1.4916Cs"1/4)-3/4 [14]. Choosing the Scherzer resolution of the microscope as the reciprocal
of the latter figure defines it to be

ds = 0.67 Cgl/4\3/4 (12)

Since the Scherzer resolution for any HRTEM depends on both the electron wavelength
and the spherical aberration coefficient, it may be improved by reducing either (or both). From
equation 12, any decrease in wavelength will have three times the effect of a similar decrease in
Cs. For this reason, the evolution-of-the HRTEM has led to a range of high-voltage micro-
scopes like the 1Mev JEOL ARM-1000, and even the "standard" lower-voltage microscope
voltage has been increased from 100keV to 200keV. In addition, a group of newer mid-voltage
(300-400keV) HRTEMs are now achieving sub-2A resolutions. A list of HRTEMs, showmg
accelerating voltages and Cg values, is given in table 1.
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4. Resolution and Coherence Effects

The limit to Scherzer resolution is determined by the objective lens phase angle X(k) at
optimum defocus. This angle is, in turn, ultimately de}tcrmined by Csand A (eqn 12).
However there exist additional limits, imposed by coherence conditions, that also determine the
weighting with which image amplitude components transfer into the image intensity spectrum.

In all HRTEM images, the incident electron beam suffers from the effects of limited
spatial and temporal coherence. These effects produce a smearing of the image, and provide the
ultimate limits on how high a spatial frequency can be transferred into the image. The effect of
partial temporal coherence is manifested as a spread of focus, and that of partial spatial
coherence as incident beam convergence producing an angular variation within each diffracted
beam [20]. Coherence effects have different actions on the transfer of linear and non-linear
terms into the image intensity spectrum, and thus produce different limits on linear and non-
linear images. -

4.1 Information Limit (Linear-Image) Resolution

Frank [10] showed that the resolution-limiting effects of partial coherence on linear
(WPO) images could be described in reciprocal space as "damping envelope" functions that
multiply the usual CTF curve. The envelope for spread of focus has the form

Ea(k) = exp{-1n12A2AZk4) (13)

where A is the halfwidth of a Gaussian spread-of-focus that models the fact that the recorded
image is the sum of many images all at slightly different values of focus. The envelope for
incident beam convergence has the form

 Eg(k) = exp{-n202(e+A2Csk2)2k2) (14)

where o is the semi-angle of the convergence cone at the specimen surface, and specifies the
range of angles (of misorientation with respect to the optic axis) over which images are formed

and added into the recorded image [20].

The effects of Eq(k) and Ea(k) on the CTF curve of figure 3b can be seen in figures 4a
and 4b respectively. Here the o and A have been assigned typical values of 1milliradian and -
60A. Note how the transfer of higher-frequency amplitude components is hc;avilyﬁ damped in
both cases. Although it is difficult to assign "cutoff" frequencies because the envelope
functions slope gradually to zero, especially in the case of the Ea(k) envelope where the slope
is more gradual (fig 4b), we can choose to set the cutoff frequencies at the value of exp(-2) or
13.7%, and produce cutoffs from the expressions for Eq(k) and Ea(k) as [18]



kip = (RAA/2)'? | (15)
and

ki = S13 4+ §173 where Si=" f’-‘ii —*ﬁg—;"’ (;%‘r‘?; )2 ] / C57"2
o 27CsA (16)

where (16) holds for values of defocus larger (more positive) than -1.23Cs*(A/a)?>.

For the conditions of figure 4, the cutoff limit due to Eq(K) is 1.42A (fig 4a) and that
due to Ex(k) is 1.25A (fig 4b)T. Note that, although Eq(k) has a lower cutoff because it falls to
exp(-2) faster than EA(K), it has less effect within the Scherzer passband because its slope is not
as shallow as that of Ex(k). The combined effect of the two damping envelopes is to reduce
transfer both within and without the Scherzer passband giving a combined cutoff near 1.5A
(fig.4c). Thus the information limit in a micrograph recorded under these conditions would be

1.5A.

Interestingly, the actions of the Eq(k) and Ea(k) envelopes (their shapes) appear very
similar for the mid-voltage microscope conditions of figure 4. Earlier matching of simulated
and experimental images by O'Keefe [21] showed that the damping énvelope that was limiting
the resolution of a low-voltage (100keV) HRTEM was not the same as the one limiting a high-
voltage (1MeV) HRTEM; at optimum defocus the low-voltage TEM was limited by
convergence and the high-voltage TEM was limited by spread of focus (fig 5).

Information Limit Resolution _
Although the combined effect of the Eq(k) and Ea(k) envelopes leads to a 1.5A
information limit for the image obtained under the conditions of fig 4c, this figure is not
necessarily the information limit of the microscope (although we could call it the "Scherzer-
image information limit"). Because the Eq(k) envelope changes shape with change in defocus
(eqn 14), so does the convergence cutoff frequency Ikly (eqn 16). Figure 6a,b shows this
effect for zero spread-of-focus. At a defocus value of 1.225 Scherzers (fig 6a), the Ikly value is
1.42A, but at 2.345 Scherzers (fig 6b), it is 1.25A. Although the image obtained under
condition (b) is not a Scherzer image, it is still a linear image, and contains information out to
1.25A. By increasing the amount of underfocus, we can continue to obtain ever higher-
frequency information -- at 3.082 Scherzers defocus the value of Iklg is 1.16A. Thus it is clear
that the effect of convergence does not constitute an information limit for the miCroscope.
However, the effect of spread-of-focus does do so. If spread-of-focus is included in the CTF

7.’I‘he: expressions (15) and (16) for Ikl and Ikly are programmed into the Fortran program HP as the
functions LIMD and LIMA. This program is available as source code from the EMSA EMPPDL.
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plots for larger underfocus, we find that all CTF plots for the microscope lie within the EA(k)
envelope (fig 6¢), and no linear-image information can be transferred at any frequency higher
than Ea(k). Thus, from eqn 15, the information limit resolution of the microscope is given by

dp = 1/Ikla = V(7AA/2) (17)

And this expression shows that the information limit is dependent only on A and A. Thus, for a
microscope at a given accelerating voltage, any decrease in A will improve the information limit
of that microscope. In order to reduce A we must reduce one or more of the factors
contributing to the spread of focus. Since the focal length of a magnetic lens is proportional to
V/P, where V is the accelerating voltage and I is the lens current, we can write an expression for
A as [14]

A= CcV[@V/V)? + (2811 + (SE/EY] (18)

where C is the chromatic aberration coefficient for the objective lens, 8V/V is the fractional
change in voltage over the time scale of image acquisition, 8I/1 is the fractional change in lens
current, and SE/E is the energy spread in the electron beam as a fraction of the total energy.
Also, any vertical vibration of the specimen with respect to the lens will contribute to A.

For the examples shown (figs 4&6), A was estimated by taking the fractional changes in
voltage and current to be one part per million, and 8E to be one electron volt. Then

A = 1.65x107 N[(10°6)? + (2x10°6)2 + (1/400,0001] A = 60A 19)

To improve the information limit, A could be reduced by reducing any of Cc, 8V, 8I, or 8E.
The first three would involve the microscope manufacturer, but 8E can be minimized by
reducing beam intensity with the gun bias control. Of course the best way to reduce 3E is to
use a field-emission-gun electron source (FEG) with a 8E value in the range of 0.3 to 0.7eV.
For a value of 0.3eV, A for the above HRTEM would reduce to approximately 40A, bringing
the microscope information limit resolution close to 1A. HRTEMs capable of accepting FEGs
are marked in Table 1.

4.2 Fringe Resolution
The concept of the damping envelope can be extended to incorporate the effects of partial

coherence on non-linear interferences by means of the transmission cross-coefficient. Fejes'

[22] derived the transmission cross-coefficient for the case of temporal coherence, and O'Keefe
[8] formulated the equivalent function for spatial coherence; later, Ishizuka [23] produced a
summary of their work. The transmission cross-coefficient assigns a damping factor to every
pair-wise interference term (fig 1a) that is summed to form an image intensity component. Plots
of typical damping functions (fig 7) reveal that neither o nor A blocks the transference of

interferences, of the form ‘P(n).‘P*(n),_ that contribute to the zero-frequency image intensity
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component (lying along the positive diagonal in fig 7). In addition, interferences of the form
¥(n).¥*(-n) (Iying along the negative diagonal) are never blocked by A, and are blocked by o
only for large Inl. If the values of defocus and o are chosen so as to allow a particular linear-
image ¥ (n).¥™(0) interference to be undamped by @, then the corresponding non-linear
interference ‘P(n).‘I’*(-n) will be undamped by both o and A (even if the linear interference
‘P(n).‘P*(O) is blocked by A); in this case, the image will contain half-period spacings
corresponding to an intensity spectrum component of frequency 2inl. For large values of
underfocus and thicker specimens, fringe resolution can greatly exceed the information limit.
Under these conditions an image of SiC with an apparent resolution of 1.09A can be produced
by a HRTEM with an information limit of 1.8A [24]. Although images containing a large
proportion of second-order interferences require interpretation via comparisons with simulated
images, the fact that they may contain information beyond the "information limit" makes them
potentially useful.

Because interferences of the form ¥(n).¥*(-n) are never damped by A, and a suitable
value of defocus can move the a-function passband to transfer arbitrarily-high frequencies, it
would appear that the fringe resolution of the microscope has no limit. However, (horizontal)
mechanical vibration of the specimen will blur out high frequencies (vertical vibration is
included in A). Also, slight misalignments of the microscope will cause the positions of the
non-linear interference terms to "slide off" the white bands of the o and A damping functions
(fig 7); these bands become much narrower at higher frequencies.

Fringe Resolution

In any particular image, the non-linear o damping function will permit the formation of
half-period fringes at half the spacing corresponding to the Ikl value given by equation (16) for
the chosen value of defocus. Thus the fringe resolution in the image will be given by

The overall fringe resolution limit of the microscope will be determined by (horizontal) mechanical
vibration of the specimen, and microscope alignment accuracy.

5. Operating Considerations
WPO Conditions .

It is possible to establish experimentally, from micro-CBED patterns of the image area or
from optical diffractograms, that a given HRTEM object is behaving as a WPO. Then the phase
change due to scattering is exactly -7/2, and the bright-field HRTEM image can be considered
as an axial electron hologram. The WPO approximation solves the "object reconstruction”
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problem by relating the exit face wavefunction to the object (the "image reconstruction" problem
involves the removal, by image processing, of unwanted electron-optical lens aberrations).

High-Voltage Microscopes
For low and mid-voltage HRTEMs, the information limit resolution (eqn 17) generally

exceeds the Scherzer-image resolution (eqn 12). This is generally not true for high-voltage
HRTEMs, in which high-voltagé ripple can produce large values of A, and hence severe
damping by the linear-image envelope function Ea(k). In fact, mid and high-vol;age
microscopes can have very similar information limit resolutions, although they might have very
different Scherzer resolutions. A comparison (fig 8) of the CTF curves for a 400keV HRTEM
(Cs=1mm) with a IMev HRTEM (Cs=2.3mm), shows that transfer down to 1.7A is similar,
but that the 400keV CTF (curve 1) reverses the sign of higher frequencies, whereas the IMeV
(curve 2) transfers without sign reversal. On the other hand, frequencies near the nominal
Scherzer resolution of the 1MeV HRTEM (1.32A) are not passed with significant weight.
Figure 8 also shows a CTF for a 1.25MeV HRTEM (curve 3), predicting transfer to below
1.2A if A can be reduced to 100A. Note that it is easy to define the Scherzer resolution as 1.7A
for curve 1, but the shallow slopes of the CTFs of the high-voltage HRTEMs makes it difficult
to produce a clear definition of linear-image resolution in a Scherzer image from these
microscopes.

Resolution Extension

Scherzer resolutions can be improved by reducing values of Cs and by increasing
microscope beam energy. The first course will continue to be followed by the manufacturers of
mid-voltage HRTEMs, and the second by the high-voltage aficionados. However, there are
problems with both of these approaches. The art of high-resolution microscopy gehcrally
requires a reasonable degree of tilt in the microscope stage, but the smaller stage dimensions
associated with reduced Cs make large tilts difficult. At higher voltages, beam-induced
specimen damage can limit the range of specimens that can be examined, and reduce the time
available fqr observing others. Low-dose techniques and sensitive CCD detectors may help
mitigate this problem. | |

7 For microscopes in which the information limit resolution is much better than the
Scherzer resolution, amplitude componeﬁts can be transferred at frequencies beyond the
Scherzer resolution by going further underfocus (fig 6). Because the image now contains bands
of frequencies with different phases, interpretation is no_longer straightforward; however the
extra information (i.e. extra to that present in the Scherzer image) can be used to intcrpret' the
structure via comparison with image simulations. Anstis and O'Keefe [25] noted that, although
at Scherzer defocus the 100keV TEM of figure 5a could not resolve the small tunnels in the
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Nb12029 specimen, they could be seen in an image taken with increased underfocus (although
the regions of the image showing the large tunnels were now scrambled). This result was
.confirmed with image simulation [25].

Instead of comparing through-focus series with image simulations to derive information -

about structural features smaller than the Scherzer resolution (but larger than the information
limit), various image reconstruction schemes have been proposed. Some of these schemes
combine the information present in a focal series of images into one image, in effect extending
the Scherzer resolution to the information limit [26,27]. One procedure has reached 1A
resolution in perchlorocoronene by combining information from the image and the diffraction
pattern [28]. Another procedure [29] resolved atoms by producing sections through a staurolite
specimen at 1.6A resolution (although atoms can be arbitrarily close in projection, they are
never closer than 1.6A in a section). For those schemes that involve division by the CTF, high-
voltage microscopes may hold an advantage, since there are fewer (or no) zeros in the CTF all
the way to the information limit (fig 8). By dividing a focal series of intensity spectra by the
spread-of-focus envelope function for the ARM-1000 operating at 800keV, another procedure
produced reconstructions with a resolution of 1.38A under conditions where the useful
"Scherzer information limit" resolution of the microscope was 1.6A [30].

Conclusions

For a HRTEM, it is possible to define several resolutions, some reflecting the limits of
the microscope, others pertaining to a particular micrograph produced with that microscope.
Scherzer Resolution: A working definition for the Scherzer resolution ds of a microscope is
supplied by eqn 12. Note that the Scherzer resolution of a particular micrograph may be lower
than ds depending upon the spatial frequencies of the beams diffracted from the specimeri, since
the Scherzer resolution of the microgfaph will be limited to the highest frequency that is
transferred.
Information Limit: The information limit d for a HRTEM is dependent solely on the spread of
focus (eqn 17), which may be estimated from equation 18, and mechanical stability. The
information limit for any particular micrograph may be worse than dj, because of the defocus-
dependent effect of incident beam convergence (eqn 16).
Fringe Resolution: It is difficult to place a limit on the fringe resolution of a HRTEM, since it is
ultimately determined by the mechanical stability of the microscope and the precision of its
alignment. The fringe resolution of a particular micrograph is limited to twice the convergence

% The 400keV microscope of figure 8 has a Scherzer resolution close to 1.7A. However its Scherzer micrograph
of a perfect [110] silicon specimen will have a resolution of only 1.92A because only the 111 and 220 diffracted
beams will be transferred from the amplitude spectrum into the image intensity spectrum (at spatial frequencies
corresponding to spacings of 3.14A and 1.92A), but not the 311 beams (at 1.64A).
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cutoff frequency (eqn 18), but represents information in the amplitude spectrum out to only the
convergence cutoff frequency. ‘

It is clear that HRTEM resolution will continue to improve. In the case of structure-
image resolution (Scherzer resolution), advances will proceed by a combination of instrumental
improvement and increased reliance on processing of focus series of images captured precisely
with CCD cameras and immediately digitized. Hopefully, such processing will approach "real-
time" as microscopes incorporate more computer control, image processing algorithms improve,
and computer hardware becomes more powerful. Because the ultimate limit on information
transfer is imposed Hy the microscope spread of focus (eqn 17), improvements in Cc, power
supply stability, and energy spread will play a large part in future advances for conventional
HRTEMs. Other approaches to improved image coherence, such as FEGs and energy-filtered
imaging, promise to play a significant role.
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Table 1. HRTEMs with point-to-point resolution better than 2.542

Maximum Scherzer resolution
operating A)
energy Cs &%

Microscope keV) (mm) (mm)  Theoretical® Demonstrated®
Cambridge HREM 600 2.5 2.7 1.70 1.8
Hitachi H800 200 1.0 1.2 2.26 2.3
Hitachi HF2000f 200 1.2 1.4 2.37

Hitachi HO000-UHR 300 0.9 1.5 1.84 1.9
Hitachi HO000-NAR 300 0.7 1.4 1.73 1.8
Hitachi HU1250 1250 2.5 3.5 1.13 1.5
Hitachi H-1500 1300 1.85 3.4 1.03 1.4
ISI4 002A 120 0.3 0.6 2.08 2.2
ISI 002B 200 0.4 0.8 1.80 2.0
JEOL 2000EX 200 0.9 1.2 2.21 2.3
JEOL 2010HT 200 1.0 1.4 2.26 2.3
JEOL 2010UHR 200 0.5 1.0 1.90 2.0
JEOL 2010Ff 200 0.5 1.0 1.90 2.0
JEOL 3010HT 300 1.4 2.2 2.05 |
JEOL 3010UHR 300 0.6 1.4 1.66 1.7
JEOL 4000EX 400 0.9 1.65 1.61 1.7
JEOL HAREM 500 1.0 1.4 1.48 1.8
JEOL ARM-1000 1000 2.3, 3.4 1.26 1.6
JEOL Kyoto-1000 1000 1.7 3.6 1.17 1.5
JEOL ARM-1250 1250 1.6 4.0 1.02 1.4
Philips CM20/ST® 200 1.2 1.2 2.37 2.4
Philips CM20/UT® 200 0.5 1.0 1.90 2.0
Philips CM30/T 300 2.0 2.3 2.25 2.3
Philips CM30/ST 300 1.2 1.5 1.98 2.0

2Adapted from Table 12.1 of reference [31]

bCTF crossover at a defocus of 1.225 Scherzers

CWhere known -- approximate figure only

dNow TopCon

®May be equipped with field emission gun (FEG)

fEquipped with field emission gun (FEG)
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Figure Captions

Fig. 1. Dlustration of the formation of the image intensity spectrum from five co-linear beams
out to IkiI=t2. (a) In the general case (eqn 2), an image amplitude spectrum with five
components generates an image intensity spectrum I(k) with nine components, out to Ikl =%4.
Interferences contributing to each to each of the nine'components are tabulated in abbreviated
form, with n.m representing the contribution from ‘i’(n).‘!‘*(m). (b) Under the WPO
approximation (eqn 4), the non-linear interferences are neglected, and I, (k) contains only five
components, out to [kl =t2. No "half-plane" terms are generated, and each linear-image
intensity component is the sum of only two interferences. Note the many missing interference
terms compared with the general case (a). XBL 925-1071

Fig. 2. Argand diagrams showing the action of sinX(k) under WPO conditions. (a) Formation
of the kth image amplitude component ¥(k). The specimen potential component V(k) gives
rise to an exit-surface diffracted beam Wg(k) at a phase difference of -n/2 from V(K). Passage
through the objective lens rotates the phase of Wg(k) through an angle of X(k) to form ¥(k).
(b) Formation of the second amplitude component contributing to the kth image intensity
component. (c) Summation of the two amplitude components to produce' the intensity
component I (k), which lies along the negative extension of the original V(k) and has an
amplitude (length) proportional to 2sinX(k). XBL 925-1072

Fig. 3. Phase-contrast transfer functions (CTFs), plotted out to a frequency corresponding to
1.4A, at defocus values of one Scherzer and V 1.5 Scherzers. Atone Scherzer (a), the passband
is flat with a transfer value of -1 at the minimum:; for 400keV and a 0.9mm Cs, crossover is at
1.78A. At+1.5 Scherzers (b), the passband has a transfer of better than 70% over the marked
passband region, and extends out to a resolution of 1.68A. XBL 925-1073

Fig. 4. CTFs (solid lines) out to 1.4A at an "optimum" defocus values of V1.5 Scherzers,
showing the effects of multiplication by the damping envelopes (dashed lines). (a) The
convergence envelope Eq(Kk) for a value of the semi-angle of convergence o of 1milliradian.
(b) The envelope Ep(k) for a spread-of-focus halfwidth A of 60A. (c) The combined effect of
the two envelope functions. XBL 925-1074

Fig. 5 Structure images of Nbj2079 taken at (a) 100keV (S. Iijima) and (b) 1000keV (S.
Horiuchi) under WPO conditions. Matching SHRLI simulations are inset-at-lower left-in each
image. Damping envelopes or aperture functions (AF) are shown for both HRTEMs, with
objective aperture (A), spread-of-focus envelope (B), convergence envelope (C), and overall
damping function (D). Spatial frequency (k) is marked in reciprocal Angstrom units.
(Published as fig.1 in ref [21]) XBB 848-6142
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Fig. 6. CTFs (solid lines) out to 1.2A for a convergence of 1 milliradian. (a) At a defocus
value of V1.5 Scherzers with A=0. (b) At a defocus value of V5.5 Scherzers with A=0. (c) At
defocus values of v 1.5, V3.5, 5.5, V7.5 and V9.5 Scherzers with A=60A; the damping
envelope (dashed lines) is plotted for a spread-of-focus halfwidth A of 60A and zero

convergence, and envelopes all the attainable CTFs. XBL 925-1075
Fig. 7. Transmission cross coefficient damping functions [8], for convergence (upper) and

spread-of-focus (lower); white means high transference. In each case, (a) is the generalized
function, (b) is the linear-image function, and (c) is the difference. The amount of damping for
any interference ‘P(n).‘l'*(m) is found by moving In! up and Iml across from the origin (center)
of each plot. For linear-image interferences, one of Inl and Iml is zero, and the damping is read
along a horizontal (or vertical) line giving a profile of the linear-image damping function (see
insert in the linear-image convergence plot). The positions of the three interferences making up
the 2 component of the image intensity spectrum of figure 1a are plotted on the spread-of-focus
damping function. XBB 848-6145

Fig. 8. Phase contrast transfer functions (CTFs) for a mid-voltage HRTEM (curve 1), and two
high-voltage HRTEMs (curves 2 & 3). Opcrating conditions are listed above the plots; the
~ spatial frequency scale and CTF cross-overs are given in Angstrom units. XBL 925-1076
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